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INTERSECTING FAMILIES OF SETS
AND THE TOPOLOGY OF CONES IN ECONOMICS

G, CHICHILNISKY

ABSTRACT. Two classical problems in cconomics, the cxisicnce of a market
equilibrium and the existence ol social choice Nuncuons, are formalized here by
the propenties of a family of cones associated with the economy. 11 was recently
established that a necessary and sufficicnt condition for solving the former is
the nonemply imtersection of the family of cones, and one such condition for
solving the latter 18 the acychicity of the unions of ils sublamilics. We show
an unexpected but clear connection between the two problems by establishing
a duality property of the homology groups of the nerve defined by the family
of congs. In particular, we prove that the intersection of the family of cones
is nonempty if and only of every subfamily has acvelic unions, thus identifving
the 1wo conditions that solve the two cconomic problems. [on addition 1o their
applications t¢ economics, the results are shown o exlend significantly scv-
eral classical theorems, providing unificd and simple proofs: Helly's theorem,
Caratheodory’s representation theorem, the Knaster-Kuratowski-Marzukicwicz
theorem, Brouwer's fixed point theorem, and Leray’s theorem on acyelic covers.
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1. INTRODUCTION

A classic problem in economics 1s the existence of a maricet equilibrivm {Yon
Neumann [37], Nash [32]). This can be viewed as a zero of a nonlincar map
Y. RY — RY representing market excess demand and embodying optimal
behavior of the traders [Arrow and Debreu [3]). The zero can be located by
homotopy methods (Eaves [23], Hirsch and Smale [30]). Smale [34, 353] has
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reexamined an intuitively appealing dynamical system which is compatible with
a field of cones of directions of improvement for the economy. Along its solution
paths all traders gain and proceed until no more gains can be attained and an
equilibrium is reached. However. unless the economy satisfies strong boundary
conditions, this process may not converge and the market equilibrium may fail
1o exist.

Another classic problem in economics is the existence of social choice Junc-
tions, {Arrow [5]). These can be viewed (Chichilmisky [8]) as maps which assign
to each vector of individual preferences a social preference, @ : PE o P,
where P is the space of preferences and k is the number of individuals. ®
must satisfy certain properties which derive from ethical considerations such
as symmetry, an equal treatment condition. The problem has a clear topolog-
ical structure. A map @ exists for a given & only when a certain topological
obstruction disappears. It exists for all & if and only if the space P is topo-
logically trivial (Chichilnisky and Heal [15]). In general, the space F is infinite
dimensional and has nontrivial homology. so a social choice rule may fail to
exist [8, 14]

Both problems are fundamental to the organization of socicty. Their solu-
tions model social agreements about how to allocate the resources of the econ-
omy among competing individuals, the market solution providing an allocation
which is efficient {Arrow [2]) and the social choice solution one which satis-
fies certain ethical properties. The solutions represent different types of “social
contracts™.

While these two problems appear 1o be quite different and have been consid-
ered separately until now, we show that, in a wcll-defined sense, they are the
same. We provide here a topological formulation of these problems which al-
lows us to identify each with apparently different propertics of a family of cones
which is naturally associated with the economy. It was recently shown that the
existence of a competitive equilibrium requires the family of cones to intersect;
the existence of social choice functions requires that all subfamilies have acyclic
unions (Chichilnisky [12, 13]). Looking at the problem in its simplest and most
general form, we obtain a topological characterization of a family of finitely
many sets in a general topological space that is necessary and sufficient for the
family to have a nonempty intersection I (One main result is thal an acyclic
or convex family has nonempty intersection if and only if every subfamily has
acyclic union (Theorem 6 and Corollary 2}, but the results extend to nonacyelic,
nonconvex families as well (Theorems 9 and 10). As a by-product, we establish
the identity between the two classical problems in economics, namely, the ex-
istence of a social choice function and of a competitive equilibriom {Theorem
113

The topology of our family of cones contains crucial information about the
economy. The homology of its nerve defines a topological invariant for the econ-
omy which provides answers to global problems such as, for example, whether
a market cquilibrium exists (Theorems 1, Corollary 2, and Theorem 11]. Fur-
thermore, this invariant allows us to decide whether every subeconomy has a

' This result was first established in Chichilnisky [9].
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competitive equilibrium (Theorem 11({b}). The homology of this nerve also con-
tains information aboul the global convergence of the classic price adjustment
process in Smale [34, 35] (see Chichilnisky [18])—it determines whether this
PTOCESS CONVerges.

The homology of the nerve of a family of sets also provides valuable in-
formation in a number of other applications in fields other than €CONOMmics,
which appear as additional byv-products of the results in this paper. These in-
clude substantial extensions and unified proofs for classical theorems which
have until now been considered disparate: Helly's theorem on n + k convex
sets in R", &k > | ([27, 28, 1]}, which is used extensively in game theory,
for example, Guesnerie and Oudu [25]; Caratheodory’s theorem and its relative
the Krein-Milman theorem, both of which are used in representation theory to
characterize the extreme elements of the cone of positive harmonic functions on
the mterior of the disk (Choquet [20]); the Knaster-Kuratowski-Marzukiewicz
{KKM) theorem (Berge [6]}, which is frequently used to prove the existence of
the core of a game (Scarf [33]); the Brouwer fixed point theorem, which is the
nonretractability of a cell onto its boundary and is used to prove existence of
solutions of simultaneous equations (Hirsch [29], Arrow and Hahn [4]); and
Leray’s theorem on the isomorphism between the homology groups of a space
and those of the nerves of an acyclic cover (Leray [31], Dowker [22]. Cartan [7]).
These classical theorems of Helly, Caratheodory, Leray, and KKM are extended
here 1o simple and regular families of arbitrary finite cardinality, consisting of
sets which need not be open nor acyclic or even connected and which are con-
lained in general topological spaces, including infinite-dimensional spaces. our
results generalize also the Brouwer’s fixed point theorem which appears as an
immediate corollary. In addition, our topological approach allows us to obtain
conditions which are simultaneously necessary and sufficient for nonempty in-
tersection of a general family of sets {Chichilnisky [9]), a result which we find
here very useful and which was not available before.

Here is a summary of the paper. In §§2-4 we set out the contexl and de-
seribe the problems of existence of a market equilibrium and of a social choice
function. A necessary and sufficient condition for the cxistence of a market
equilibrium—called /imited arbitrage—is defined as the nonem piyv mtersection
of a family of cones. A necessary and sufficient condition for the existence of so-
cial choice functions—called limited social diversity—is defined as the acyclicity
of the unions of subfamilies of the same family of cones. Our task is to prove
that the two conditions are in fact identical. This identity (Theorem 11715 a
corollary of the results in §5.

Section 5 studies the problem in a general form. First we prove a duality
result which relates the reduced singular homology groups of the union and
the intersection of a subfamily in dirmensions which are complementary with
respect to its cardinality [9]. This analysis is used to prove that all subfamilies
up to a certain cardinality have acyclic unions if and only if they have acyelic
intersections, Then we establish that the whole family has a nonempty acyelic
intersection if and only if all the reduced homology groups of the union of its
subfamilics up to a certain cardinality vanish.

We further extend the results to families of scts which need not be open,
acyclic. or even connected in order to obtain a condition for the nonempty
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mtersection of the tamily, whether or not this intersection is acyclic. The re-
sults thus provide a topological characterization of families of sets which have
a nonempty intersection. In particular, this characterization shows that a con-
vex family has a nonempty intersection if and only if all its subfamilies have
acyelic umons. Therefore, (imited arbitrage is identical to {imited diversity, and
the problems of existence of a competitive equilibrium and of social choice
[unctions are the same,

Sections 6 and 7 apply the results in §5 10 extend a number of classical the-
orems and to provide simple. unified proofs to such disparate results as Hellyv's
theorem, Caratheodory’s representation theorem. the Knaster-Kuratowski-
Marzukiewicz theorem, Brouwer's fixed point theorem, and Leray's theorem
on acyche covers, Our extensions of these classical results include familics of
sets in arbitrary topological spaces to which the earlier results do not apply, sets
which need not be open, convex, acyelic, or even connected. The families may,
in addition, be of arbitrary finite cardinality. Section 7 establishes the identity
between the problem of existence of a competitive equilibrium and the problem
of existence of social choice functions.

2. DEFINITIONS

We consider collections of finitely many sets in a topological space X, de-
noted {U,}.cy, with set of indices §. Such a collection is called a cover of
X when X = UM L, it 1s an open cover when cach set is open in X . The
term family will be used to deseribe a collection of finitely many sets {U, )¢
in X whose union Uses Us may or may not cover X. An open family in X
15 a family consisting of sets which are open in X. A subsct of indices in §
will be indicated by 6 C §; cach subset # € § defines a subfamily {U,}, o of
the famifly {U,},cs. We shall use the notation €/, for the intersection of the
subfamily indexed by #, Uy =1, Uy, and U for its union % = |J, ., U,.

M. will be used to denote reduced singular homology, and H,(Y) to de-
note the g-singular reduced homology group of the space V. reduced singular
homology 1s defined by replacing the usual chain complex

g = 0 — Cy—0
by
C‘!—? (| —>(,'.:.—rZ ﬁD,

where Z are the integers and ; + Z takes each O-simplex to 1. The corre-
sponding reduced singular homology groups denoted H,(Y ) are defined for all
g = — 1. The standard O-singular homology of Y is the direct sum Hy(Y )& 7 .
MNote that with this notation if ¥ is a nonempty connected space, then Y=
0 and H_(Y)=0:andif ¥ hastwo connected components, then Hy(Y) = Z .
If ¥ isempty, Hy(Y)=0 and /i (Y) = Z. It is immediate that with this
definition the Mayer-Vietoris sequence {Spanier [36, 56, Chapter 4]) extended
to reduced singular homology

coHp((ANB) = Ho((A) S Hy ((B) — Hy (AU B) — HylANB) — -
18 cxact.

We say that a space ¥ is acvelicif and only if 7,{Y) = 0. Since by definition
the space 1V is nonempty if and only if /¥ ;{Y) =0, in our notation ¥ is called



INTERSECTING FAMILIES OF SE1S AND THE TOPOLOGY OF CONES IN ECONOMICS 193

acyclic when Y is not empty and is acyclic in the standard singular homelogy.
When the space X is contained in a linear space, a family is called convex if
it consists of convex sets. A family {U,}..s is called acyclic if, forall ¢ c §.
the set Uy is either empty or acvelic.

For any & > 0 we say that the family {I,},cs salisfies condition 4, if the
intersection Uy is acyclic for every # © S having at most & + 1 elements.

For any k > 0 we say that the family {U,},cs satisfies condition B, if the
union U'? is acyclic for every # having at most & + 1 elements.

If X C R", then the family {U,}.cy is called a family in R" and is called
a family of k setsif S has cardinality k.

If X isasimplicial complex with set of vertices S, then a simple cover of X is
an apen cover {U,},c¢ of X satisfying cl({7,) ¢ star(n) forall & & S , where
cl{Y¥) is the closure of ¥ and star{«) is the interior in X of the union of all
closed simplices in X having o as a vertex.

The sets in a simple family need not be convex nor acyelic or even connected.
A subcomplex L of a simplicial complex K is a subset of K (that is. if s €
L = 5e K); asubcomplex L is called full if each simplex of K having all its
verlices in L belongs to L (Spanier [36]). The symbol [«]..s denotes the fid!
subcomplex of X with set of vertices {an}.cq.

A cover of the simplicial complex X by finitely many closed sels {Catacs is
called regular if W8 C S, [alaes © Unep Car

A regular cover {C,},c5 of a simplicial complex X therefore satisfies: for
every subset # C § and every simplex A of X whose vertices lie in Uaes Ca s
we have A C |J, .5 Ci. The sets in a regular cover need not be convex, acyclic,
or even connceted.

Given a set X and a collection {U, }acs of subsets of X, the nerve of
1l }aes is the simplicial complex having as vertices the nonempty elements
of {L},}.es and whose simplexes are finite nonempty subsets of [ Uy }ues with
nonempty intersection |Spanier [36]).

3. MARKET EQUILIBRIUM

3.1. A market economy. A market economy is described by its goods and its
traders. There are n > 1 goods and H > 1 traders. Traders derive utility
from vectors (called trades or bundles of goods) in R", which is called the con-
sumption or trade space . Each trader is identified by a vector describing his;her
nitial endowments of goods €, € R" — {0} and by a real-valued smooth (C 23
function u; ; R* — R which describes the wtility derived from the different
consumption vectors. The space of allocations is R™ : its elements describe
the assignment of one consumption vector in R" for each trader. The util-
ities u; are increasing: vx,y € R", if x > yp, then u(x) > w(y), and
3 e> 0: Duj(x) >, where Duj(x) is the gradient vector of u, at x. If for
some r € R the set u;'(r, oc) is not bounded below in R, then we as-
sume that the set of directions of gradients of the corresponding hypersurface,
{v = Duix)f||Pui{x}| © wilx) =r}, is closed in R". This assumption is to
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control the behavior at infinity of the leaves of the foliation of R" induced by
the hypersurfaces of the function u;; geometrically, one rules out “asymptatic
directions”™ for the gradients on those hypersurfaces which are not bounded be-
low. A market economy E is therefore defined by its trade space and its traders:
E={R", Q. u,i=1,..., H}L

31.2. Market eguilibrium. Our next tasks are to motivate and then to define the
notion of a competitive equilibrivm for the market E. A competilive equilib-
rium represents a rest point of the trading activity of the economy E . Trading
requires prices. A price is a rule which assigns a real number called vafue to
each bundle of goods in a way that depends linearly on the bundles. There-
fore, prices are vectors in the dual space of the space of trades, R". Each price
p € R" determines the budget set of a trader B{p, £);) consisting of those
trades which are affordable at the traders’ initial endowment Q,. Therefore,
Blp, Q) ={xe R":(p,x)=(p,LL)}. where {.,.} is the inner product in
R". Traders trade within their budgets in order to increase, ideally to oplimize,
their utility.

Trading comes to a rest when a price p* € R" is found at which the corre-
sponding set of all optimal trades {x7},_; _ g is compatible with the resources
of the economy, L.e., the supply of each of the n goods cquals the demand. A
competitive equilibrium of the market economy E is therefore defined as a vec-
tor of prices and of trades, (p*, x7---x5;) € R" x R™T, satisfying the following
conditions:

(1) ui{x)= Max u(x,)
xEB(pr L)

for B{p*, Q) ={x e R": (p*, x) = (p*, i}
and
i
(2) S -Q)=0erR".
i=1
The vector x!(p*) is the demand of trader ¢ at prices p*; a solution x;(p)
to problem (1) for all p € R" is the demand function x,(p) : R® — R" of
trader i. ED(p)= "il (x(p) — €, is the aggregate excess demand function Z
of the economy E. Condition (2) means that at the equilibrium allocation all
markets clear, i.e., total demand for each good equals total supply, and therefore
EDip=1=10.
3.3, Market cones. Consider a market economy E = [{R", 8, u;. i = 1,
...+ H}. The asymptotic preferred cone A, is the cone of all directions which
intersect every hypersurface of u, of values exceeding w; (L)) :

{3 A ={v e R sup  w (L +2v) = sup w(x)}.
ASD o) XERY

The market cone D) 18
(4) D,={peR":wueAd, (p.v)>0}

*The demand and the aggregate cxcess demand functions may not be well defined for some
prices which are aot equilibrium prices.
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If the utility u; is a concave function, then both cones 4, and D); are open
convex sets, which we now assume. The condition of /imited arbitrage (LA) is
that all marker eones in (4) intersect:

i
(5) (LA} [ Di # 4.

i=1

This means that there exists a price p € R" at which only limited increases
in utility can be achieved by all traders [rom trades which are affordable from
their initial endowments.

The following has been esiablished:

Theorem 1. Limited arbitrage (5] is necessary and sufficient for the existence of
a competitive equilibrivin in the market E,

For a proof see Chichilnisky [12].

The condition for existence of a competitive equilibrium is therefore the
nonempty intersection (3) of a family of cones in R® which are naturally associ-
ated with the economy E, namcly, of the family of market cones 1yia. i
defined in (4). The market cones {I;},_, _ » contain global information about
the economy, since they establish directions of utility increases along which all
utility levels are eventually reached. As established in Theorem 1, the mar-
ket cones {I%},_,  y dectermine whether or not the market has a competitive
equilibrium. They also determine whether or not the dynamical process revis-
ited in [34, 35] converges globally, it converges if and only if limited arbitrage
holds, 1.e., if and only if the family of cones has nonempty intersection (see
Chichilnisky [18]).

The family of market cones {D,},_, _ 5 also contains information about
the existence of social choice functions. In the next section we shall see that
a condition for existence of a social choice function is that every subfamily of
the family of market cones, {0}, |, 5, has an acyclic union.

4. SOCIAL CHOICE FUNCTIONS

4.1. Individual and social preferences. In this section we consider a connected
and simply connected C'W complex P {Spanier [36]) represcnting a space of
preferences on R" . The explicit cell structure on P is not needed, only the
general topological properties of W complexes. For example, P could be a
polyhedron or a smooth manifold. P* denotes the product of P with itself
- k Limes | . |
k times, P* =P x-.-x P, and AP is the “diagonal” of P* = {ip,---p;) €
PY Wi, j=1.,....k. p; = p,}. Examples of spaces of prcferences P are
provided in §7.

4.2, Secial choice functions. A social choice function for the space of prefer-
ences £ and for & individuals, is a continuous map @ : P¥ — P assigning to
each vector of k individual preferences in P* a social preference in P satisfy-
ing:

1. @ is symmetric: i.c., @ is invariant under the action of the group of
permutations of & letters acting naturally on P*,
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This condition means that all & individuals are treated equally and is called
ROV,

2. The map induced by the restriction of @ on A(P*] al the homotopy level.
(B | ALP*)). : m(ALPY)) — =i(P), 1s onto ¥) .

This condition arises from several applications [14, 16]. For example, it is
implied by the FPareio condition [10], which requires thal when all individuals
prefer one choice x to another Vv, so does societv. It is also implied by the
assumption that @ | AP = id{A[P¥)), 1.e., when @ 18 restricted 1o the
“diagonal™ of P¥, APY = {(pj - Pl € P* st Yi,j, pi=p}, itisthe
identity map . This lalier condition means that when all individuals have the
same preference, society adopts that common preference, and it is called respect
of unanimity [8].

An allocation is an assignment of a bundle of goods in K" 10 each trader, and
the space of allocations is R Fach trader has a preference over allocations.
A smooth preference over the space of allocations R” H is a smooth { C?) unit
vector field p @ R — §%F~1 satisfying: Zu ! R™M . R with ¥x € R,
pix) = Alx)Duix) for some Alx) >0 (Debreu [21]). The space of all smooth
preferences on allocations in g"H is denoted T{R™. The space of preferences
P(Ey) similar to those of a subset 1 C {1,..., H} of traders in E is

(6] PiEg) = {p cT(R™: vxe R and Wj. plix) € U D.} A
ieH

where p’/(x) is the projection of pix} on the jth copy of R" in the product
space R"7. The interpretation is that P(E,) consists of all preferences which
are similar to those of some trader [ € f in some position j in the sense
that they increase in the directions of large utility increases for [ in position
j and only in those directions. This is discussed further in §7. Note that the
notion of similarity of preferences depends on the same family of market cones
{Dybicq,.. .n defined in equation (4) in 3.

4.3. Social choice and the topology of preferences. In its most general form the
problem of existence of social choice functions has no solution; for the space
I = [(R™) of all smooth preferences on R™ m=»2:

Theorem 2. There exists no map ®: I* _. I satisfring 4.2.1 and 4.2.2 vk > 1.

A proof is in Chichilnisky [8, 10].
A natural question 1s what spaces of preferences P admit a social choice
function. The following is known:

Theorem 3. There exists a social choice map © - PY — P satisfving 4.2.1 and
422 wk > 1, ifand only if P is acyclic.

This was proved in Chichilnisky [8] and Chichilnisky and Heal [15].

When a social choice function @ : P* — P exisls, then by Whitehead's
theorem (Spanier [36]) P is contractible, since the space P is acyclic and by
assumption m(P) = 0. Therefore, there exists a continuous deformation of
the space of preferences F into one preference. For this reason. in this context
the acyelicity of a space of preferences establishes a limit on social diversity
(Heal [26]]. For any given subsct g of traders in E, 8 c{l.... ,H}, a
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social choice funcion @ : (P{E;)* — P{Ly) cxists satisfying the required
conditions ¥k = 1 if and only if P{£,) is acyclic. This in turn means that
the spacc of gradients of the preferences in FP(Ey). namely, | ., D, must
be acyclic. We say the market £ has {imited social diversity or simply fimited
diversity  (LS), when:

(7 (LS) vac{l,...,H}, 0Zd= UD_. is acyclic.
it

A consequence of Theorem 3 is:

Theorem 4. There exists a social choice function ® . P(EyY" — P(Eg) satisfving
4.2.1 and 422, ¥v6 C {l,... ,H} and ¥k > 1, if and only if the market E
has limited social diversity (LS).

This follows from Chichilnisky [8] and Chichilnisky and Heal [15].

4.4.  Social choice and the nerve of market cones. For a social choice function @
to exist, the union of every nonempty subfamily of market cones {U.}, | 4
must be acyclic. We saw in §3 that the cxistence of a competitive equilib-
rium requires the nonempty intersection of the same family of markel cones,
ﬂfi {D;} # 0. To identify the two economic problems, we must exhibit the
connection between two properties of the family of cones. One is that the fam-
ily has nonempty intersection—i.c., {imited arbitrage (5). The second is that the
union of every subfamily is acyclic—i.c., {imited diversity (7). This is achieved
in Theorem 11 in §7 and motivates the results in the following section.

5. DUALITY AND INTERSECTING FAMILIES

Having established the importance in economics of the topology of the nerve
of the market cones [D,},-, _  y. we turn now to the mathematical problem.
In their simplest and most general form the questions are: when does the family
of market cones {D,},.-1 4 have a nonempty intersection, and how does
this relate to the acyclicity of the unions of its subfamilies? The nonempty
intersection of this family of cones is the condition of limited arbitrage (5],
and the acyclicity of the unions of its (nonempty) subfamilics is the condition
of limited diversity (7)., We saw in §3 that the former (5) is necessary and
sufficient for the existence of a market equilibrium and in §4 that the latter
(7} 1s necessary and sufficient for the existence of social choice functions. This
section will establish inter alia that the two mathematical conditions (5) and (7)
are identical.

Here is a summary of the section.’ Theorem 5 proves the equivalence be-
tween two topological conditions of the nerve of a family of sets of a general
topological space X' —these are conditions 4, and B, defined in 42, the former
requiring that all subfamilies with at most & + | elements have acyclic intersec-
tion and the latter requiring that all such subfamilies have acvelic unions. This
identity 15 simple and geometrically appealing. It has many implications, as we
show below. Because it is close to the foundations of homology theory. there
is a subtle point in its proof, which ensures an excision property for singular

The results in this section were first established in Chichilnisky {19817,
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reduced homology (see, e.g.. Spanier [36, p. 189]) so that the Mayer-Vietoris
sequence for reduced singular homology—a sequence which is rarely used for
familics where the sels may have empty intersection—is exact. A discussion of
this exactness for reduced homology for families which includes empty sets 15
in §2, and the excision property is discussed in this section after condition (6.

The exactness of the Mayer-Vietoris sequence is used in our proof of a duality
property of the singular reduced homology of a family of sets in Proposition 1.
This proposition cstablishes a simple isomorphism between the singular reduced
homology groups of the union and those of the intersection of a subfamily in
dimensions complementary with its cardinality. This duality property allows us
to prove the following somewhat surprising result in Proposition 2: For families
in R the conditions 4, and B, need only be required for subfamilies with
al most & + 1 sets: they are automatically satisfied otherwise. The geometric
implications of these results are shown in Corollary 1, which shows that, if the
family is acvelic and every subfamily with at most N + 1 sels has a nonempty
intersection, then the whole family has a nonempty interscction,

Building on this, Theorem 6 gives a necessary and sufficient condition for
the acyclic (and therefore nonempty) intersection of every subfamily of a fam-
ily of finitely many sets in a general topological space X ; the union of every
subfamily must be acyclic. Furthermore, if the family of sets is in RY, the
acyelicity is required only for subfamilies with no more than N + | sets. For
acvclic families, Corollary 2 gives a simple, necessary, and sufficient condition
for the nonempty intersection of the whole family; particularly, the family has
nonempty intersection if and only if every subfamily has an acyclic union. This
result is just what is needed for the economic applications presented in §43 and
4, as seen in Theorem 11 in §7.

So far we have considered families which have either empty or acyclic inter-
section and have excluded those where the sets have nonempty intersection, but
this intersection is not acyclic. In several applications, for example, for non-
convex economics it is necessary to consider the condition of limited arbitrage
(5) which requires nonempty intersection, cven when this intersection fails Lo
be acyclic. Here Mayer-Vietoris is no longer useful, and other arguments are
needed. The rest of this section extends the results to families which may have
nonacyclic as well as nonempty intersection. This is achieved as follows: The-
orems 7 and 8 establish an isomorphism between the homology of a space X
and that of the nerve of a simple and of a regular cover respectively, as defined
in £2. These include covers by scts which may be neither open, convex, acyclic,
or even connected. Using this isomorphism, Theorems 9 and 10 prove neces-
sarv and sufficient conditions for nonempty intersection; these are similar to
Theorem 6, but they are valid for simple and for regular families respectively.

Unless otherwise stated. the following results apply to a general topological
space X . and the family {U,},c5 satisfies

(8] |J va = | tintes (L),
e N nEs

where intp(L,) denotes the interior of the set L, relative to the set /¥ =
Uges(Ug). A family satisfying this property (8) is called an excisive family.
Since we can take X = |J ¢ U, (Bl 1s a rather general specification.  For
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example, (8] is satisfied when the family consists of sets 7; © X, each of which
is open in X . Note, however, that condition (8] does not require that the sets
Uy be open in | (L7} In fact, (8) is strictly weaker than the requirement
that the sets L, be open in X : it includes, for example, families consisting of
two closed sets (', and C; in R" with €| C 5, The role of (8) is to ensure
the union and the intersection of any subfamily of {U,}.-5 define an excisive
couple so that the Mayer-Vietoris sequence of reduced singular theory is exact
(sce Spanier [36, Theorems 3, 4 and Corollary 5. pp. 188-189]). An example in
[36, p. 188] exhibits two closed path-connected sets ¥, and Y in R? such that
YUY, = R* which do not satisfv (8) and for which the corresponding singular
Mayer-Vietoris sequence is not exacl. Condition (8} prevents such pathologies.

Theorem 5. An excisive family {U,},es in X satisfies Ay If and onfy if it
satisfies By,
Proof. The first step in the proof is 10 establish the following duality result:

Proposition 1. Consider an excisive family of sets in X | {U,}aes. satisfving
Ai—y Jor k= 1. Thenif @ S has k + 1 elemenis, for all g

(%) H (U%) = H, _(Uy).

Proaf. We proceed by induction. When k = 1. the family has two sets, and this
1s the Mayer-Vietoris sequence for reduced singular homology as defined in §2.
Assume the result is true for every family {{/.} - where @ has k elements.
Consider now a family {U,}.c. of k + 1 elements satisfving 4, ,. Define ¢
sothat t={0}Ud,and V, = Uy U, . &€ B . The new family {I,},.o has
k elements, and it satisfies A, ., becausc the family {U aee satisfics Ay
and by Mayer-Vietoris. Then

H, U = L‘;[Vﬁ'] = H, —1,i¥y) by the induction hypothesis
= k4 (Louthin--nlyl}
=H,_ (o [Uhn--n UL by Maver-Vietoris
=H, (U:),
completing the proof of the proposition. The rest of the proof of Theorem §
follows from Proposition | by induction on k. 0O

Proposition 2. Let {U,},cx be an excisive family in R satisfving A, . Then
{U.} also satisfies Ay and By for all k = n. In particular, the intersection af
this jamily is always nonempiy,

Proaf. This follows from Theorem 35 and Mayer-Vietoris, because Hi(U) = ()
for i >n foranopenset £ C R". O

Corollary 1. Let {U,}, 25 be an acyelic excisive family in B® with ar least n+ 1
elements. If every subfamily with n + | elements has nonempty intersection, then
the whole family has a nonempry intersection.

Proaf. This follows from Proposition 2 because 4, is satisfied by acvelicity. O

Example 1. The conditions of Proposition 2 and Corollary | cannot be relaxed.
In general, the family must have fnite cardinality. Consider. for example, the
infinite family in R'{ Loy 2 L L0 = (i, ~ 3, Every subfamily of T P

i H
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FiGure | FIGURE 2

has acyclic union, but the whole family has empty intersection. Figure | shows
that Corollary 1 does not hold for nonacyclic families; each three of these four
sets in Figure | intersect, but the whole family has an emply intersection. Figure
2 also shows that Proposition 2 is not true when 4, is not satished, Here n = 2,
and 4. is not satisficd because the union of two of the sets is not acyclic.

Theorem 6. Let [, }.cs be an excisive family of k > 2 sets. Then the inter-
section of every subfamily [, , Up, ¥8 C S, is acyelic (and hence nonempty)
if and only if the union of every subfamily |J, U, . %8 C §, i5 acyclic; iLe,
the family satisfies By . If the family {U,}.eq is in R", then its intersec-
tion is acyclic if and only if its unwon |, U is acyclic and it satisfies B, for
j=mnin. k- 2).

Proof The first statement follows from Theorem 5. For the second statement,
firstlet j = k — 2. Assume that | . L, isacyclicand {{ },c5 satisfies B, ;.
Then B,_, is satisfied. By Theorem 5 so is Ac_, so that the intersection of
the family is acyclic and thus nonempty. Reciprocally, if the intersection of the
whole family is not empty, then A, _, is satisfied and by Theorem 3 sois B,
50 that the union of the family is acyclic. Now let j = #. By assumption and
Theorem 5, A4, is satisfied. By Proposition 2 this implies that the whole famaly
has nonempty intersection and that .4,, is satisfied for all m = 0. Therefore
by Theorem 3, B, is satisficd for all #1, and the family’s union is acyche. O

Example 2. Figures 2 and 3 show that the conditions of Theorem 6 cannot
be relaxed. Figure ? shows that “acvelic intersection”™ cannot be replaced by
“nonempty intersection™; it depicts two sets which do intersect but have a
nonacyclic union. Figure 3 shows that Theorem 6 is not true if we replace
“acyclic union™ by “contractible union” in its statement; it depicts two “comb”
spaces having an aecyclic (and hence nonempty) intersection, the point {x}.
The union of the two comb spaces is acyclic, confirming Theorem 6, but 1t 18
not contractible.

Corollary 2. An acyclic excisive family {U,},es has nonempty intersection {f
and only if ¥8 C S, the union of the subfamilv {U},co. |yosUn. i3 aeyvelic,
Proof. This follows from Theorem 6 and the definition of acychic families. O
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Example 3. The conditions of Corollary 2 cannot be relaxed. Figure 4 depicts a
family of & = 4 sets in R? which does not satisfy 8- jor A4.] because three of
them do not intersect. The union of the family is acvelic, hut the intersection
15 empty,

Until now we considered families which had cither empty or acvelic inter-
scetion, The following results apply to simple and regdar families, as defined
in §2. These may consist, for example, of sets in R" which are neither open
nor acyclic or even connected. The families may have noracyelic. ronempty
intersection. Mayer-Victoris is not useful in this context. and we must adopt a
different approach.

If X is a simphcial complex. the expression X = nerve {7, ).,y 15 used
to indicate that X and nerve {L',}.cy have the same combinatorial structure.

Theorem 7. Let {U,},cx be a simple cover of a simplicial complex X with set
af vertices equal to 8. Then X = {U,}b.cx.

Froof. The proofl follows by induction on the number of sets & . Let the set
of vertices 5 consist of & = 2 elements. Then X 15 cither a scgment or
a set of lwo points; assume X 15 a segment. Consider x £ AU, . Since
¢ Uy, x € U5, Therefore, 3y & Uy nbh. Nowlet X =[x} U ixal.
Since LY, o star(ne), L7 7 L% is emply., Consider now the following inductive
assumption for a set of vertices & of & + 1 elements: the nerve (U} = X,
and 1if the k sets {L,}, -, intersect, then 3 a simple family {W,} 1,00
covering A with W, c Uwe andan x € AW n...ndW,. Now let S
have k& + 2 sels. Assume XV oisa b+ | simplex. By the inductive hypothesis
every subfamily of k + 1 sets in {L7,} intersects, and in particular, J a simple
family {W,} cocrry With x € (coep W, . Let Z,. = Wy, — I, where
/. is a closed segment in W), M. W, ,and x £ df,. Take ¥, to be
an element of the simple family {Z. }.,-¢.; defined otherwise by Z, = W,
for o < I and Lpo2 = L. Then Ye, £, C L, {Z,,:qir!.f_,'“: covers X,
and x € 4Z; N NBZ,,,,%0 x € Z,,5. Therefore, x € (1)cncpra Za C
Mycocpsa Ua # 8. Finally, if X is not a simplex, [Ny.,cp,, U = 8, since
U, cstaria) forall a2 8. O '

The following result uses the definition of regular covers given in 52

Theorem B. Let {C,}..s he a regular cover of a simplicial complex X. Then
nerve {C,},ze =X
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Proof. First we prove that Theorem 7 implies that if {Colaes is a regular cover
of X, then [,.5Ca #0. Let D, = C, Mstar(a) ; then U,cs Pa = X . Now by
Theorem 7
(10)

if [U,}acs is a simple family covering X with U, 5 D, for all «, (] Vs # 0.

=y

We now use (10) 1o prove [1,.g 0. # @ , by induction on L

Case k =1.1If [,_, Do =0, then 3y, Uz defining a simple family with
Mooy 2 U = 0, contradicting (10). Now let § have k + 1 elements: by the
inductive assumption, [V, cr Ce # 0 I [Micqk CinCe., =0, then 3 a
simple family {U,} st. [[Vj<necx Usl 1 Uaey = B, contradicting {10]. Thus
Nugs D # ¢ so that N, ¢ Co # 0,

Having established the result for the case where X is a simplex, the rest of
the proof follows the proof of Theorem 7 by considering the family defined by
the complements of the sets {Colaes I A O

The two following theorems extend the results of Theorem 6 to the cases of
simple and regular families as defined in §2: here we are concerned with the
nonempty intersection of the family, whether or not this intersection is acyclic.

Theorem 9. Let {U.}.es be asimple family of k sets, such that every subfamily
with k — 1 elements has a nonempty intersection. Then the whaole family has
a nonempty intersection if and only if its union \J, o U, 15 acyclic. If k >
n—+ 1, we need to require only that every family of n + 1 sets has a nonempiy
intersection.

Proof. By assumption the (k - 2)-skeleton of nerve {U, }oe5 is the boundary
ofa k— 1 simplex. Let X = {L,},=x. By Theorem T nerve {U,}ues = X
Therefore, all sets in the family {L7,} intersect if and only if its union X =
Uaes Ua s acyclic. O

Theorem 10. Let {C,}aes be a family of k closed sets with [elace © Uyeg Coer
and (e, Co # W for every subset o of § with k — 1 elements.  Then
Mucy Co # 0 if and only if U,e, Co is acyclic. If k > n+1, we need to
require only that every family of n o+ 1 sels has a nonempry iniersection.

Proaf This follows from the proof of Theorem 9, replacing Theaorem 7 in the
proof by Theorem 8. O

6. EXTENSIONS OF THEOREMS OF HELLY, CARATHEODORY, KEM,
BroUWER, AND LERAY

The question of when sets intersect was studied in the classic theorems of
Helly [27, 28] and of Knaster-Kuratowski-Marzukiewicz in [6]. They provided
conditions which are sufficient for a family of sets in R" to have a nonempty
intersection, but their results are restricted to families with n + 1 or more scis
in the case of Helly's theorem and to families with exactly n + | sets in the
case of KKM's theorem. in both cases having either a convex structure or other
particular characteristics. These two results are quite specific to the problems
they study and appear to be ditferent from each other. However, the problem
of nonempty intersection in 11s general form has a clear geometrical structure
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and can be dealt with by using topological tools, We showed in §5 that no
restrictions on the number of scis 15 required, nor 1s convexity, acyclicity, or
even connectedness of the sets. Furthermore, the families need not be in B” or
in any linear space. Cnce this 1s understood, the two classic results of Helly and
KEKM appear as special cases of our results. Brouwer's theorem is also a special
case of our results, since 1t is known to be implied by the KKM theorem, as is
Caratheodoty’s theorem, which follows from the Helly's theorem.

Helly's theorem is connected here to the Brouwer's fixed point theorem and to
an extension provided here of Leray’s theorem on acyelic covers, Our extension
of Leray’s theorem (Leray [31], Dowker [22], Cartan [7]] is in Theorems 7
and 8 of §5; while Leray's theorem applies to acvelic covers and proves the
isomorphism of the homology of the nerve of the cover and that of the union
of the family. our Theorems 7 and 8§ significantly extend this result for covers
consisting of sets which may not be acvelic nor apen or even connected.

This section therelore exhibits how the results in §5 extend and unify several
classical theorems. Proposition 2 in §5 extends Helly's striking theorem on the
nonempty intersection of families in B” having more than 7 + | sets (Helly
[27]). Alexandroff and Hopf [I]) to possibly nonconvex and nonacyelic families
with any number of sets in a gencral topological space X . Corollary 3 below is
Helly’s theorem. Since Helly's theorem implies Caratheodory’s representation
theorem { Eggleston [24]), Proposition 2 in §5 extends also Caratheodory’s theo-
rem Lo the same wide range of families, Corollary 4 is the Knaster-Kuratowski-
Marzukiewicz theorem (Berge [6. p. 173], which follows immediately as a very
special case of our Theorem 7 in §5. KKM’s theorem is restricted to families
of sets in R" which cover an n-simplex, while our Theorem 7 applies to fami-
ligs in a general topological space of any cardinality, which cover any simplicial
complex. An additional extension of the KKM is Caorollary 3. which applies
1o simple families. Corollary é is the Brouwer fixed point theorem [Hirsch
[29]). These results cxhibit a common topological root for these classical and
somewhat disparate results.

Corollary 3 (Helly's theorem). Let {U.}..s be a family of convex sets in R"
with at least n + 1 elements. Then [f every subfamily with n — | sets has a
nonemply intersection, the whole family has a nonempiy intersection.

Proaf. This follows dircctly from Proposition 2 in &3, which is valid in much
maore generality for any number of sets in a general topological space. hecause
convex sets define an excisive family. C

The following corollary requires no convexity:

Corollary 4 (KKM Theorem). Let {C,}ocs be a regudar cover of a k-simplex
X as defined in §2. Then [ - C, #0.

Proof. This follows directly from Theorem 8. which is valid more generally for
any simplicial complex. Since nerve {C, },.y and Y have the same combina-
torial structure, it follows, in particular, that [ .. C, £80. O

=N

=AY

In addition, the following result extends the KKM theorem to a different
class of covers. simpde covers, as defined 1 52, which need not sausty any of the
conditions of KKM theorem:
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Corollary § (Extension of KKM to simple families). Let {U.}aes he a simple
cover of a k-dimenstonal simplex X . Then (,.5 U 15 ot emply.

Proof. This follows directly from Theorem 7. which is also valid for covers of
any complex X . C

Since the KKM theorem follows directly from Theorcm % as shown in Corol-
lary 4, by presenting for completeness a well-known argument, we show that
Brouwer’s fixed point theorem also follows as an immediate corollary of our
Theorem 8.

Corollary 6 {Brouwer’s fixed point theorem). Let X be a k-simplex, and | .
X — X a continuous function. Then 3x € Ko st

Proof. The proof follows by contradiction. If [ : X — & has no fixed point,
then it defines a retraction r: X — JX. Let dX = U, X;, where X; is the
ith face of X', a k — | simplex. Now define the closed sets ;= (rY(X.)}.
i=1,...,k+1 Then {C}i=,.. &0 is a closed cover of X satisfying the
conditions of Corollary 4, so (), C; # . But if pe;C . then rip) e NX: =
i, a contradiction. 0O

7. MARKET EQUILIBRIUM AND SOCIAL CHOICE

Our final task is to establish the equivalence of the two economic problems,
namely, the existence of a competitive equilibrium and the existence of a so-
cial choice function. A good way Lo start is to provide examples of spaces
of preferences in order to illustrate the topological problem involved in social
choice. By Theorem 3 in §4, this problem can be solved only for acvelic spaces
of preferences.

A preference p 15 an ordering of the choice space R" which is induced by
a utility function u : R" — R, where we indicate x =, y & ulx) = uly). A
smooth preference on R" is defined by a smooth (€2 unit vector field g R" —
§n-1_ with the property that 3 a function u: R™ — R such that vx e R",
JA(x) > 0 such that p(x) = Alx)1Dulx); i.e., there exists a function u such
that ¥x, pl(x) is collinear with the gradient of u (see Debreu [Z1]).

One example of a space of preferences P is the space of all smooth pref-
erences on R7.denoted T{R"), endowed with the sup norm, lg — &l =
Sup,zgv |plx) — x(x)| . Another example of a space of preferences is the space
P, of all linear preferences on R", which are those preferences induced by
linear utility functions on R", n > 2. The space P is the spherc ST
the zero preference is also included, we have the space Py of all linear pref-
erences on R"—this space is S"~'[J{0}. Different preference spaces arisc in
different applications (for examples, sce, €.., Heal [26]). Typically, preference
spaces are not linear nor convex or acyclic; for example, the space of smooth
preferences T(R") is not acyclic [8].

Our last task is to establish the connection between the existence of a mar-
ket equilibrium and the existence of a social choice function. Both problems
depend on the characteristics of the traders’ preferences, but they do so in Two
different ways. The market £ has a finite set of preferences. one for each
trader, {p1...- - pur}. The set of preferences in the economy is therefore a
discrete finite set of points in the space of smooth preferences T'[R") defined
ahove . The social choice function. by contrast, is generally defined on large
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spaces describing a universe of all possible preferences, typically a conneeted
subset P of the space of all smooth preferences in I'(R"), which is not a finite
sel.

[n order to exhibit the connection between the two problems—the existence
of market equilibrium and that of a social choice function—we define a space
consisting of preferences which are naturally “close™ to those of the preferences
of the traders in the economy £. The space of preferences Fp consists of a
large number of preferences, assumed to be a connected subspace of T(R"), all
of which are, in a well-defined sense, similar to the preferences in the market
£ . We therefore need to define what is meant by a smooth preference which 1s
similar 1o the preferences of the traders in the market E.

A smooth preference p € P defined over allocations in R*" is called simifar
to the preference of trader / £ E in position j when ¥x € R™! the projection
of p(x) on the jth copy of R" is in the market cone of trader /:ie., ¥Wx €
R™! . pi{x) € D;. The interpretation of this condition is that the preference
p increases in the direction of that of the trader ¢ 1in position ; for large
utility values. The space P[F,) of preferences similar to those of a subset
¢ {l,...,H} of traders in £ was already defined in §4: it consists of all
those smooth prefercnces p € T(R™') such that wx € R™ | piix) e [J-5 D
If we consider the problem of finding a social choice function for the space of
preferences P{Ez) which are similar 10 those of some subset # of traders in
the economy E, 6 < {l.....,H}, then by Theorem 4 in 44 the necessary
and sufficient condition is the acyelicity of |J,.; D;. The existence of a social
choice function for cvery such space of preferences P(Ey). Y0 C{l.... , H}
therefore requires

Wi L sl E"?Eﬂ:"’UD.‘ is acvelic.
]

Note that in order to solve the social choice problem we must go back 1o
the properties of the family of market cones {D,}.eq1. . gy of the cconomy £
defined in (4)—the same family of cones which define the condition of limited
arbitrage {3).

Theorem 11 exhibits the identity between the problems of existence of a
competitive equilibrium for a market E and the existence of a social choice
function. Let E be a market as defined in 3. A subeconomy Ey of E is
the market consisting of the thosc traders in £ who belong to the set # C
{1,... . H}, he,

Eg={R".Q, ui.ic 0}

Theorem 11, The following properties of the economy E = {R", €} p;.i =
I.....H} are equivalent:

{a) E has a competitive equilibrium.

(b} Every subeconomy Ey of E has a competitive equilibrium.

{c) Every subeconomy Eg of E with at most n + 1 traders has a competitive
equilibrinm.

{d} There exists a social choice function @ : PlEY — P{Ey) satisfring
condittons 4.2.1 and 4.2.2, for every space P{Ey) of preferences similar to those
of the traders in a nomempry set 0, w8 < {l.... [}, and vk = 1.
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Proof. The equivalence between (a) and (b} follows immediately from Theorem
1 in §3 and from the definition of limited arbitrage (LA in (3). We establish
next the equivalence of the statements {a} and (¢}. By Theorem 1, £ has a
compeltitive equilibrium if and only if £ has limited arbitrage (LA} as defined
in (3), i.e., if and only if the family of dual cones {1;}, | .  x has a nonempty
intersection. Since [P}, .. g 1is an acyclic excisive family in R" , by Corol-
lary 1, (5)1s true if and only if every subfamily of {£;},— » withindicesina
set #c{1....,H} of at most n+ | elements has nonemply intersection, i.e.,
if and only if the corresponding subeconomy Ep satisfies limited arbitrage (5),
and therefore by Theorem | if and only if £z has a competitive equilibrium.

The equivalence between statements (a) and (d} follows from Theorem 4
in %4 and from Theorem 6 and Corollary 2 in £5, because {/%};=;. . x isan
acyclic excisive family, so

H
ﬂD, #Zb = ¥ nonempty # C {l...., H}. UD,- 1s acvclic,. 0

Fal izd
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