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Equilibrium conditions in smooth infinite economies with separable utilities are de-

scribed by Fredholm maps, which are Frechet differentiable. Therefore, Smale's extension

of Sard's theorem can be used to study infinite economies. We study structural stability and

local uniqueness of equilibrium in smooth infinite economies and relate the theory of

markets to modern Fredholm theory. C 1998 Elsevier Science S.A.
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Many problems in economics involve infinite dimensions. Typical examples are
dynamic choices, such as optimal portfolios in finance and optimal paths in growth
models (see, for example, Chichilnisky and Kalman, 1980, Duffie and Huang,
1985). In the past 2 decades there has been an increasing interest in the study of
infinite economies. However, much of the literature so far has mainly dealt with
existence of equilibrium; determinacy of equilibrium is largely unexplored.
Chichilnisky and Kalman (1980) have dealt with a special case in the context of
resource allocation problems. Kehoe et al. (1989) have followed an approach that
takes excess demand functions as primitives. This paper proposes to attack the
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problem by taking preferences and endowments as primitives. We set up a
framework for analysis and relate determinacy theory to modern Fredholm theory.
This is useful because differential topology can be extended to infinite dimen-
sional manifolds with Fredholm maps. Under these conditions a locally stable
equilibrium corresponds to a point in the domain of some Fredholm map, at which
the Fredholm index is equal to zero. The central issues in this approach are the
following:
1. To identify a `right' framework, which is both mathematically tractable and

economically meaningful. In other words, to choose a `right' topological space,
where Fredholm theory can be applied and which is natural from an economic
point of view. These two requirements are usually not satisfied simultaneously.
For example, the positive cone of Hilbert space L'- is natural in financial
markets but not good for Fredholm theory because it has an empty interior. 1

2. To characterize conditions for the parameters of dynamic economic systems
such that the underlying economies are `well behaved'. To apply Fredholm
theory, the excess demand function of the economy must be a Fredholm map
between two infinite dimensional manifolds. This property cannot be `assumed':
it must be derived from the parameters of the economy. Even continuity is not
guaranteed. Excess demand functions in infinite economies are typically not
well defined and are generally not smooth even when they are well defined.
Indeed, following Chichilnisky (1976), and subsequently Araujo (1987), excess
demand functions could be smooth only if the commodity space is a Hilbert
space, whose natural positive cone usually has an empty interior.
In order to use differential techniques, we assume that the commodity space L

is a separable topological vector space for which the interior intL + of the positive
cone L + is non-empty. Typically examples of such spaces are C([0, T]) with the
supremum norm 1 1 A = sup, E lo.Tlj x(t)l and the positive cone C + ([0, T]) = {x:
At) >_ 0, V t E [0, TI). For simplicity, in this paper we restrict ourselves to the
commodity space C(M, R"), where M is any compact manifold. For more general
treatment of commodity spaces, see Chichilnisky and Zhou (1995).

The literature typically takes as the price space the natural positive cone L` +
of the dual space L" of L. When the positive cone of the underlying commodity
space has a non-empty interior, the corresponding price space is extremely large,
which is the reason that excess demand functions cannot be well defined.
However, not all elements of the price space are equally interesting. With
separable utility functions, only a small subset of the price space can support
equilibria. Therefore, there is no loss of information from discarding those

See Chichilnisky (1976, 1977) and Chichilnisky and Heal (1993) for the introduction of Hilbert
space and Sobolev space (such as L') in economic models. In Fredholm theory, the domain and range
of Fredholm maps must have the structure of Banach manifolds. Since L+ has an empty interior. i t i s
not a Banach manifold, therefore, L2 is not an ideal space for Fredholm theory because prices are
always in L2,.

http://interior.it
http://interior.it
http://interior.it


G. Chichilnisky, Y. Zhou /Journal of Mathematical Economics 29 (1998) 27-42

	

29

elements that do not support equilibria. This is the key step in our departure from
the traditional way of thinking about this problem, which makes it possible to
bring differential techniques to infinite spaces.

We show that, for separable utility functions on infinite dimensional Banach
spaces, equilibrium conditions are described by Fredholm maps, which are Frechet
differentiable. Therefore, Smale's extension of Sard's theorem can be used to
obtain the determinacy theory of equilibrium. '`

The next section will set up a general framework that we will work with.
Sections 3-5 report the main results in the paper. The last section makes some
concluding remarks and lists our plans for further research.

2. Preliminaries and mathematical notation

In this section we group together some basic mathematical definitions, nota-
tions and facts that will be used later.

2.1. Fredholm index theory

The most important mathematical concept that we will use is the Fredholm
map. Here we only give a brief review. Readers may refer to Yosida (1974) or
Conway (1985) for details.

Given two Banach spaces X and Y, the vector space of all bounded linear maps
from X to Y will be denoted by L(X, Y), with the norm I I - I I defined by

I I TII = sup( IITxjj:IIx1I <<-1)

L(X, Y) is a Banach space. Let M be a closed subspace of X. Define

Codim M = Dim(X/M )

Let T E LM Y), and

KerT=(xEX,Tx=0}

RanT= (y E Y,Tx = y, x E X)

The map T is said to be a Fredholm operator if, and only if, RanT is closed and

Dim(KerT) < oo, Codim(RanT) < x

The index of T is defined by

IndT= Dim(KerT) - Codim(RanT)

We denote by D(X, Y) E L(X, Y) all Fredholm operators. A linear map T E L(X,
Y) is compact if T(x, I I xjj < 1) has compact closure in Y. The set of compact

2 In addition to the papers we have mentioned, there are other papers dealing with determinacy

theory of equilibrium in infinite dimension, using different approaches. See, for example, Dana (1994)
and Shannon (1994).
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operators from X into Y is denoted by L O ( X, Y). T E L(X, Y) has finite rank if
RanT is finitely dimensional. Clearly any linear map that has finite rank is
compact. An interesting fact about Fredholm operators is that their index is
invariant under compact perturbations.

Theorem 1. Let A E D(X, Y), and suppose that K G LO(X, Y). Then A + K E D(X,
Y) and Ind(A + K) = Ind A.

Theorem 2. Let X, Y, Z be Banach spaces and suppose that A E D(X, Y) and
B G D(Y, Z), then AB G D(X, Z) and

Ind( AB) = Ind A + Ind B

Theorem 3. If A is invertible and K E L O( X, Y), then Ind(A + K) ~ 0.

2.2. Basic non-linear analysis

We assume the readers are familiar with basic calculus on Banach space. A
basic reference is Zeidler (1985), or any standard functional analysis textbooks.

First we note that there are similar implicit mapping and inverse mapping
theorems on Banach spaces, see Abraham and Robbin (1967)

Theorem 4 (implicit mapping theorem). Let X, Y, Z be Banach spaces, U is open
in X, V is open in Y, f: U X V --> Z be a C'-map (m > 0). Let f2(xo, y o ): Y---> Z
be a homeomorphism for (x, y) E U X V, where f2(xo , yo) represents the partial
derivative of f with respect to the second variable y. Then there is an open
neighborhood Uo of xo and C"'-map g: Uo -~ V such that g(x o) = yo and f(x,
g(x)) =f(xo , yo) for all x E Uo . g is unique.

Theorem S (inverse mapping theorem). Let X, Y be Banach spaces, and U be an
open set in X. Assume that f: U -4 Y be a C"`-map(m > 0). If f'(xo ) is a
homeomorphism at xo E U, then f is a local homeomorphism at xo .

Let X and Y be Banach manifolds and f: X - Y be a Cl -map. The Frechet
derivative of f is denoted by f, and the `differential' of f is denoted by Df 3 . We
shall say that f is a Fredholm map if for all x E X, the linear map f (x):
Tx X -> Tf(x)Y is a Fredholm operator. If X is connected, the index of f (x) will
not depend on the particular choice of the point x in X and is referred to the

3 For a definition of the Frechet derivative and the differential of a map on Banach manifolds, see
Abraham and Robbin (1967) or Zeidler (1985).
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index of f. The following Sard-Smale's theorem will be the main tool to explore
the generic property of local uniqueness of competitive equilibrium.

Theorem 6 (Sard-Smale's theorem). Let f: X - Y be a C "'(m > 0) Fredholm
map between separable Banach manifolds X and Y. Assume Y is complete, X
connected, and m > index(f ). Then the set of regular values for f contains a
dense GS subset of Y. A GS subset is defined as the intersection of a countable
family of open subsets.

The model represents a pure exchange economy with infinitely many commodi-
ties and a finite number of consumers. It is derived from economic considerations
and can be summarized as follows:

The economy is denoted

_ (Wi'170Xi)i-<t_t

There are I agents, index by i. X i is the consumption set of agent i. For
simplicity, in this paper we may assume that X i = C++ ( M, R"). W(x) is the
utility function of agent i. Tui is the initial endowment of agent i. Society's
endowment ru=Yivi E C ++ ( M, R"). We assume that the utility functions are
separable, i.e. they can be written as the following form

W(x)
= fm

u'(x(t),t)dt

where the integral is with respect to some metric on the compact manifold M. 4

Example 1. In growth models, the utility function W(x) is simply a continuous-time
version of a discounted sum of time-dependent utilities. In finance, when the
underlying parameters follow a diffusion process, Wi(x) is just the expectation of
state-dependent utilities, and M is the state space.

Since we are going to use differential techniques, we need to find conditions
that guarantee that W(x) is twice Frechet differentiable. Let there be given C Z
functions

u i( x, t) : R+ + X M -j R

Given t, let

V,`( x) = ly E R++l u`( y , t) >_ u`( x , t)}

4 The assumption of compactness is only for the simplicity of exposition, it is by no means
necessary. For a general treatment, see Chichilnisky and Zhou (1995).
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Assumption 1. For any fixed t E M, the function tt'(x,

	

): R'+ + - R is strictly
monotonic and concave, and V,'(x) is closed.

Proposition 1. Under Assumption 1, the fitnction

Wi ( x) = f u'( x( t),t)dt
M

is strictly monotonic, concave over Xi , and is twice Frechet differentiable.

Proof. The proof has several steps:
Step 1: We observe that

W( x) = f tt'(x(t),t)dt
M

is well defined. It is a simple consequence of Assumption 1.
Step 2: We show that Wi(x) is a C' functional. Take any x(t) E C ++ ( M, R")

and write the Gateaux derivative with respect to c(t) E C++ ( M, R").

da

	

as fMtt'( x(t) + av(t),t)dt

We can use the Lebesgue theorem on the differentiation of integrals with respect
to a parameter

Therefore

d-a fMU'( x( t) + at'( t), t)dt = fm a u'( x( t) + au( t),t)dt

da
= fMu.'V(x(t),t) v(t)dt

_ ~ui,.( x(t),t),v(t))

So under the inner product s ( - , - ) on C(M, R"), the Frechet derivative of
Wj(x), denoted by Wi'(. ), can be uniquely expressed as the following form:

Wi' (x(t)) =Il iV(x(t),t)

Step 3: To show that Wi '(x(t)) is C' Frechet differentiable, we recall the
definition of Frechet derivative.

We observe that it is not complete.
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Definition 1. Given a map 7r: X --> Y, a point x E X and a map A E L(X, Y), we
say that A is the Frechet derivative of -rr at x if

1
lim-11rr(. x+y) - 7r( x) -AYII=0
Y-0IIYII

where X and Y are Banach spaces.

Now we return to the proof of Step 3.
First, we show that

Wr'(x(t)) : X(t) -UJX(t),t)

is continuous.
Let x„(t) --4 x(t) in C(M, R"), we need to show that

it 'V(x„(t),t) , u'V(x(t),t)

is in C(M, R"). Since I x(t)I < b for some constant b, u',,(x(t),t) is also bounded
by the compactness of M. Therefore,

I I U'(x„(t),t) - u`( x(t),t)II ~ bIl xjt) -x(t)II ---> 0

Now we show that W,'(x(t)) is Frechet differentiable and that

W,"(x(t)) =u'V_,(x(t),t)

Following the definition, we need to show that

1
1 -m~ l l ~, I l l l l 1 i` (x(t) +Y(t)'t) -u_x(t),t) -ui . .~- (x(t),t)

	

t)11 =0

We note that u',. j x(t), t) is a matrix-valued function of t and that

u'V (x(t) +y(t),t) -u'X(x(t),t) =It' ' (x(t) + e(t),t) -y(t)

where 0 < 9(t) < v(t). So the above formula can be written as

1
li m

	

I I [ u''(x(t) + e(t),t) -u'i..,(x(t)'t)~ °Y(t)IIy-oII~'

< Jim I I I u`V.,(x(t) + 9(t),t) -u'v.'-(x(t)'t)] 1 1 -0o

since 9(t) - 0 when 1 ,(t) -> 0 in ( I - I I -norm.

4. Excess demand functions

An excess demand function is a map from the price space to the commodity
space describing the difference between what is available and what is demanded
by all traders at each price. The demand function describes what traders desire and
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can afford to buy at those prices. In finite L-dimensional spaces, excess demand
functions are formally defined as follows:

Definition 2. A function ft: R+ + --> RL is called the excess demand function of
agent i if it is defined by letting x i =fi(p) + iv i be the unique maximizer 6 of
W;(x i ) subject to the budget constraint px < < pr7i.

In the case of infinite dimensional spaces, the existence of excess demand
functions can be problematic. The literature typically takes as the price space the
natural positive cone of the dual space of the underlying commodity, space. When
the positive cone of the underlying commodity space has a non-empty interior, the
correspondent price space is extremely large. In this case excess demand functions
in infinite economies typically are not well defined.

However, not all elements of the price space are equally interesting. With
separable utility functions, only a small subset of the price space can support
equilibria. There is no loss of information. from discarding those elements that do
not support equilibria. This is the key step in our departure from the traditional
way of thinking about this problem, which makes it possible to bring the
differential techniques to infinite spaces.

In this section; we will develop this approach. Unlike the current literature, we
will restrict our attention to a subset of the price space to define an excess demand
function without loss of information. To simplify the exposition, we make the
following assumptions:

Assumption 2. When n = 1,

lim + uX( x, t) = + C)O
X- O

for each fixed t.

Remark 1. Assumption 2 is widely used in financial literature to obtain interior
equilibria. It assumes that instantaneous utility functions have infinite marginal
utility for consumption at zero.

When n > 1, we would like to make a similar assumption for utility functions.
For each fixed t, consider the corresponding indirect utility functions. Denote by
V(p, w, t) = u(x(p, w), t) the indirect utility functions, where

x(p,w) = arg max u(x,t), x E R", p E R+ +
PX _< w

For each fixed p and t, we know (aV)/(aw) > 0.

6 The uniqueness is not required in the usual definition of excess demand function. It can"be

guaranteed by the assumption of strict concavity of utility functions.
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Assumption 3. When n > 1,

av
lim + - = + 00
w-o aw

for each fixed t and p.

Proposition 2. Let

GradWi(x(t)) - ui(x(t),t)
1 j u i (x(t)'t) jj

Under Assumptions 1-3,

GradWi(x(t)): C ++ ( M,Rn) _4S++

is C 1 map and onto, where S++ = {y E C++(M, Rn )III y11 = 1)

Proof. Let p(t) E S ++ , and choose some A > 0 such that

min Ap(t)
tGM

is' sufficiently large. Let

ux(x(t) ,t) ='kp(t)

By our assumptions., there is a well-defined x(t) such that the above formula
holds. Now we need to show that such x(t) is contained in C ++ ( M, Rn). To see

this, we consider the inverse of UX(x(t), t) with respect to t,

x(t) = (ux)-1(Ap(t),t)

By the implicit mapping theorem, we know that (ux) -1 (c, t) is continuous with

respect to c and t. The same procedure as in the proof of Proposition 1 completes
the proof.

	

0

Definition 3. A price P: C(M, R n) ---> R is a real valued linear function on C(M,
R n) which gives non-negative value to any element in C ++ ( M, R°). A feasible

allocation x(t) = (x,(t), . . . ,x,(t)) is an allocation such that EI-, xj < W. A
feasible allocation is an equilibrium when there is a non-zero price P with

P(wi) = P(x i ) and for any y E C++ ( M, R n),

Wi(y) > Wi(xi) -), P(y) > P(xi)

Existence of equilibrium can be derived from Bewley (1972). ' It is shown in
Bewley (1972) that, to obtain equilibrium prices in L,(M, X, p,) (a subset of the
dual space of L.(M, .X, p,)), s utility functions must be Mackey continuous. 9 He

7 For a more general discussion of existence of equilibrium in Hilbert space and Sobolev space, see

Chichilnisky and Heal (1993).

8 L„(M, .X, lt,) consists of all essentially bounded functions from M to R".

9 The Mackey topology is the strongest topology on L, for which L, is the dual of L..



36

	

C. ChichilniskY, Y. Zhou /Journal of Mcithernatical Ecoi7oniics 29 (1998) 27-42

showed that this condition, in addition to the basic assumptions, is indeed
sufficient.

Theorem 7 (Bewley). Assume, in addition to Assumptions 1-3, that
(i) each utility,function is Mackey continuous;
(ii) tu E int L:( M,
Then the economy has a quasi-equilibrium, and every quasi-equilibrium price

belongs to L,(M, .I, Fk).

It is shown in Bewley (1972) that separable utility functions considered in this
paper are indeed Mackey continuous. Furthermore, from the discussions in
previous sections and under Assumptions 1-3, it is easy to show that every
quasi-equilibrium is an equilibrium and every equilibrium price belongs to
intL7 (M, 2~, /A In the following we further refine Bewley's result. We note that
our consumption space C ++ ( M, R") can be embedded into L: (M, Y, p,). In our
case, the state space M is a compact manifold, the o--algebra _~' is generated by
the open sets of M, and the probability measure /.t, is the given metric on M (of
course, we can normalize A, such that ILc( M) = 1).

Theorem 8 (refinement of Bewley). If 2t71 E C++ ( M, R"), Vi, then, under
Assumptions 1-3, every equilibrium price p E C++ ( M, R") and every equilib-
rium consumption c i of agent i belongs to C ++ ( M, R").

Proof.

	

Let

	

u i(c i ,

	

t) = A i P,

	

Vi.

	

It is easy to see that

	

A,=* 0.

	

A competitive
equilibrium is Pareto efficient by the first welfare theorem, therefore it maximizes
a weighted sum of individual utilities. For separable preferences, the weight is just
the inverse of the Ais at the optimal consumption. '° Let

subject to

I 1
u( y,t) = max

	

-ui ( x i ,t)
.r; EL .±i-1 ~i

It is easily verified that u(y, t) satisfies all assumptions about utility functions in
previous sections. Let

U( Y) = f u( y(t),t)dt
M

1 0 See Chi-Fu Huang (1987).
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for some Jt > 0. Therefore, 'GT E C++ ( M, R") implies that p E C++ ( M, R").
The next result, combined with Proposition 2, tells us that we can establish

similarly individual demand theory in infinite economies for the model specified
in this paper.

Proposition 3. For all p(t) E S ++ , and w E R ++ , under Assumptions 1-3, there
is a unique demand vector Fj(p(t), w) E C++ ( M, R") such that

Fi( p(t),w) =

	

arg

	

max Wi( y)
Cp(t), y >~ K.

If and only if

u.(Fi ( p(t),w),t) = Ap(t)

(P(t),Fi(P(t),w))=w

for some A > 0, and furthermore,

F'i(P(t),t): S++XR++-C++(M,R")

is a diffeomorphism.

Proof. Step 1: Necessity.
It is an immediate consequence of Proposition 2.
Step 2: Sufficiency.
Denote the hyperplane by

A = {yeC++(M,R")I(P(t),y)=w)

Obviously, Wi(y) is a strictly concave function on A. Also,

Therefore,

dW,(F,+a(y -Fj))

da
~A

Fj(p,w) = arg max Wi(y)
yGA

- fMus( F, , t)( y - Fj)dt

_ Af p(t)( y - Fi)d
M

=0

It is unique globally on A by the strict concavity of W i(y).
Step 3: Denote Gi : C++ ( M, R") ---> S++ X R ++ by

Gi (x(t)) = [ GradWi(x(t)), (GradWj(x(t)),x(t))]
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It is easy to check that Gi is differentiable and onto. From Step 2, we know that
the composite map

F, - Gj: C++(M,Rn) , C++(M,Rn)

is identity map, and

Gi o F : S++ X R ++ -- S++ X R++

is also identity map. Therefore, F; 1 = Gi.

Proposition 4. Under Assumptions 1-3, the demand function is a Fredhohn map
and the index of F'(p, w) at (p, w) is 0. Furthermore, the index of Fj

'(p, w) can
be written as the sum of a inverse operator and a finite rank operator.

Proof. IndF, = 0 is a direct result of Proposition 3. Now let's calculate Fj by
means of the formula in Proposition 3. Denote by DFi the differential of Fi .
Differentiate the two sides of the following two equations

we get

Therefore,

u' ( Fi , t) = AP(t)

(P(t) , F) = w

u' x( Fi,t) DFi

	

= ADp(t) + DAp(t)

(Dp(t),F) + ( p( t),DF)

	

=Dw

simplifying the above formula, we get

DFi = A(uXX) -' DP(t) +Dk(uXX) -1 P(t)

	

( 2 )

Where (ux X ) -1 is the inverse of matrix uxx(Fi, t) for each t. Put Eq. (2) into Eq.
(1), we obtain

DA( P(t),(uxx)-1P(t)) _ -A(P(t),(uzx)-1DP(t)) - (DP(t),Fi) +Dw

A(P(t),(uXX)
-

1 DP(t)) + (DP(t),Fi) - Dw
DA= -

	

(P(t),(uxX)-1

	

( )
P(t))

	

3

Therefore, substituting DA in Eq. (2) by Eq. (3), we obtain

A(P(t),(u'X)-1DP(t)) + (DP(t),Fi)

	

-
DF(P(t) ,w) _ -

	

1

	

(uxX)

	

P(t)
(P(t),(UXX) P(t))

i

	

1

+

	

(uXX)

	

P(t)

	

Dw + A(UXX)-1 Dp(t)
(P(t),(uXX) P(t))
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From Eq. (4) the operator defined by the first term has a finite rank, and the sum
of the last two terms defines an invertible operator, therefore, F; is, by definition,
a Fredholm operator.

5. Stability of equilibrium

Now we have all the required mathematical tools in our hand to deal with the
main issue in this paper. Since for each agent i, there is a well-defined individual
demand function F(p(t), w), we can: define our economy by s = (Fi , X i ,
z7i)1 < i:5

I . For the rest of the section, we will denote by H = C ++ ( M, R"). We
assume that the demand functions are fixed, so the economy is actually defined by

zT=(zT1,...,mj) EHX ... H= H'

I
Given zT E H, if an element p(t) E H satisfying

I

	

I

EFj(p(t) ,(p(t) ,zu )) = Ev7i
i = I

	

i = 1

then p(t) is an equilibrium price of the economy. We denote by E(UT) the set of
p(t) satisfying the above equality.

Theorem 9 (the main theorem). There is a dense G, subset V of H I, the space of
endowments, such that E(iv) is discrete for any w E V, and for each such
discrete point w, locally the equilibrium in E(v7) depends continuously on w.

Proof. An outline of the proof is as follows. We show that the function F as
defined below is a Fredholm map, therefore, we can use the Sard-Smale theorem
and follow directly the proof for the finite dimensional case in Debreu (1970). Let

4 = S++ X R++ X H
I_ 1

We define the function F from 4 to H I by associating with an element
e = (p(t), w, nT2 , . . . . n7l ) of d the value F(e) = (z7 i , . . . , n7j ), where

I

	

I

TT1 = F( p(t),w) + EFj(p(t),(p(t),v7j)) - Ewi
i =2

	

i =2

It is a simple exercise to find that for every e E d, one has ( p(t), zu i ) = w. We
also note that, given zr E HI , the equilibrium price p(t) belongs to E(uT) if and
only if

F(p(t),(p(t),1T1),M2(t)IVT3(t),...,VTI(O) = zg(t)

and that the points of E(v7) are in one-to-one correspondence with the points of
F- '(ru). From the last section, we know that F is differentiable. In order to use
Smale's theorem, we need to prove that the index of F' is 0.

To see this, let zr_ 1 = (zU2 ,

	

. . . , zuj ). Therefore,

F: (p(t),w,Vs_1)-(W1,W_1)
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So we have

Let

F: (T,(t),R,m-I)-(MI,ru_i)

aF

be the partial derivative with respect to (p(t), w), while v7-, remains fixed. In
the same way, we define the partial derivative (aF)/(avJ-, ) with respect to zT_ , .

We directly calculate the partial differential of D(),(t).,,.) F and D,_ , F as follows

,~ aF;

	

Vt.
D( t)(t).w)F = DF1 +

	

-DP(t) + -(DP(t),zu)
i =2 aP

	

aw.

From Eq. (4) in the last section, we have
t

D(P(t).1r)F= Aj(u.`',) DP(t)
1 =

t

	

-A;( P(t),(UV.1)-I DP( t)) - ( DP(t) , Fj) + (DP(t) , tuj>

	

-i

Dw- (Dp(t),rTi) _,

(P(tO(u,.a) P(O)
Since for each fixed t, (u',.,)-' is a negative definite symmetric matrix
fixed t, hence

t

is an invertible linear operator. As for D,,, - F,

aF;

aw

Therefore, we have

DF(P(t),w,cv-))

-Aj(P(t),(u.t.,)-I DP(t)> - (DP(t),Fj)

(5)

for each

http://G.Chichilniskv.Y.Zhou/Journal
http://G.Chichilniskv.Y.Zhou/Journal
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WDP ( t ) , vT j i

( X0,(u',,) P(t)y

i

	

~ 1F..

+ E

	

aW
(P(t),Dr7i)

i =2

The term in the brackets () defines an invertible linear operator. The rest defines a
finite rank linear operator. Therefore, from Theorem 3 we know that the index of
F'

	

i s 0.

We know that F -1 (r7O) is a submersion at a regular value zu o . Therefore, F'
has empty cokernel at r7 o . Since the index of F' is 0, its kernel is also empty as
well, which implies that F' is a linear isomorphism.

The rest of the proof is a simple application of inverse function theorem
(Theorem 5) and Sard-Smale's theorem (Theorem 6).

	

El

6. Further research

Our approach yields useful results. They are summarized as follows:
(i) We have assumed separability, which is widely used in the literature. With

this assumption, most price vectors cannot support equilibria for the underlying
economies. Therefore, it is safe to remove the set of prices that cannot support
equilibria, without loss of any information about the set of equilibria. A key result
in this paper is that, on this price space, the excess demand function is a Fredholm
map with index zero. This makes the application of Sard-Smale's theorem
possible.

(ii) The index of Fredholm maps can be explicitly calculated (see Proposition 4
above). This makes the set of equilibria more tractable mathematically (see
Theorem 9 above).

It seems possible to extend the above results to the following cases:
1. A continuum of agents. The set of traders {1, - , 1} is replaced by a unit

interval. If agents in the economies are not `too diverse' in a proper sense, our
results should be applicable.

2. More general utility functions. The assumption of separability is by no means
necessary. Many utility functions, such as those which exhibit `habit formation'
(see Heal and Ryder, 1973), or those which are called stochastic differential
utility functions (see Duffie and Epstein, 1992), have similar regular properties.

3. Other topological spaces. For example, the main theorem also applies to
Sobolev spaces.

4. The topological structure of the set of equilibria. This describes the set of
solutions to simultaneous non-linear operators as the parameters of the econ-
omy vary. This set has been classified topologically in finite dimensional
spaces (see Balasko, 1975, 1988 for complete markets, and Chichilnisky and
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Heal, 1996, for incomplete markets) but not in infinite spaces. Using the
techniques developed here it should be possible to obtain a complete characteri-
zation of the equilibrium manifold with infinite goods for both complete and
incomplete markets.
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